Electrochemical and Photochemical Oxidation of Cationic Dyes: A Comparative Study

Souad Bouafia-Chergui a,b,c, Nihal Oturan b, Hussein Khalaf a and Mehmet A. Oturan c,*

a Université Saad Dallab Blida, Laboratoire de Génie Chimique, BP 270, 09000 Blida, Algeria
b Centre de Développement des Energies Renouvelables, BP. 62 Route de l'Observatoire Bouzaréah - Alger, Algeria
c Université Paris-Est, Laboratoire Géomatériaux et Environnement, 5 bd Descartes, 77454 Marne-la-Vallée cedex 2, France

Abstract: This study reports on comparative performance of electro-Fenton and photo-Fenton processes in the mineralization of three cationic dyes: BB41, BR46 and BY28. Primary objective was to determine the optimal conditions for both processes. It has been shown that the mineralization rate by electro-Fenton process depends on operating parameters such as applied current density, catalyst concentration, pH, etc. It was also observed that dyes degradation by hydroxyl radicals follows pseudo first-order reaction kinetics. Under the optimal operating conditions ([Fe^{3+}] = 0.2 mM, j = 3 mA cm^{-2}, and pH = 3), electro-Fenton process leads to an almost mineralization of dyes solutions reaching 93, 86 and 77% of TOC abatement for BB41, BR46 and BY28 respectively. The dye mineralization rates obtained are around 95, 93 and 85% for BB41, BR46 and BY28 respectively for a treatment time of 5 h with a ratio R = 10 and [Fe^{3+}] = 0.2 mM. The mineralization of a mixture of the three cationic dyes was also studied in a second step. Results showed that both photo-Fenton and electro-Fenton processes are able to reach almost complete mineralization rates. Finally the electro-Fenton process is considered the more efficient and interesting technique due to its environmentally friendly character with low energy consumption and no use of chemical reagents.

Keywords: Electro-Fenton, Photo-Fenton, Advanced oxidation, Cationic dyes, Mineralization, TOC.

1. INTRODUCTION

In recent years, there has been a great interest for so-called advanced oxidation processes (AOPs) which constitute an attractive alternative to treating wastewater containing toxic and/or persistent pollutants. They are based on the in-situ generation of a powerful non specific oxidizing agent, the hydroxyl radical (\(\cdot\)OH) which is able to oxidize a broad range of organic pollutants quickly and non-selectively [1-7]. There are several methods for generating \(\cdot\)OH; among them, Fenton based oxidation processes [8-15] are the most popular ones. These processes are based on electron transfer between hydrogen peroxide (H\(_2\)O\(_2\)) and ferrous iron ion (Fe\(^{2+}\)) according to the reaction (1) (Fenton's reaction). In the case of the use of another \(M^{x+}/M^{x+}\) homogeneous redox couple such as Cu\(^{2+}/Cu^+\), Co\(^{3+}/Co^{2+}\), etc., instead of Fe\(^{3+}/Fe^{2+}\) couple, the process is called "Fenton-like process”.

\[
Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + \cdot OH + OH^- \quad (1)
\]

The oxidation power of H\(_2\)O\(_2\) is enhanced in the presence of ferrous ion because Fenton’s reaction leads to the formation of a very powerful oxidizing agent, the \(\cdot\)OH. This reaction requires large quantities of both reagents: H\(_2\)O\(_2\) and iron (II) salt. On the other hand, the ferric iron generated from the Fenton’s reaction precipitates in the form of insoluble Fe(OH)\(_3\) salt, which constitutes the process sludge. In fact, the Fenton’s reaction can be catalyzed in the presence of excess of H\(_2\)O\(_2\):

\[
Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + H^+ + H_2O_2^- \quad (2)
\]

\[
Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + O_2 + H^+ \quad (3)
\]

But the reaction kinetics, and consequently regeneration of Fe\(^{3+}\) is very slow through reactions (2) and (3). In addition in this system a large part of \(\cdot\)OH generated from reaction (1) can be consumed by wasting reactions (4) and (5) due to the enhancement of the reaction rates at high H\(_2\)O\(_2\) and/or Fe\(^{3+}\) concentrations:

\[
Fe^{2+} + \cdot OH \rightarrow Fe^{3+} + OH^- \quad k = 7.5 \times 10^8 M^{-1} s^{-1} \quad (4)
\]

\[
H_2O_2 + \cdot OH \rightarrow HO_2^- + H_2O \quad k = 2.7 \times 10^9 M^{-1} s^{-1} \quad (5)
\]

The high values of rate constants of reactions (4) and (5) indicate that they can compete with the pollutant under treatment for \(\cdot\)OH leading to a decrease of the process efficiency, in particular when H\(_2\)O\(_2\) and/or Fe\(^{3+}\) concentrations are important. In order to minimize the chemical reagent amount and consequently to avoid wasting reactions and process sludge formation, conventional Fenton process can be supported electrochemically (electro-Fenton process) [1,3,11-18] or photochemically (photo-Fenton process) [3,5,7, 19-22]. The photo-Fenton and electro-Fenton oxidations have recently emerged as very promising technologies because of their high efficiency and cost-effectiveness compared with other AOPs [23-30].

In the electro-Fenton process, the \(\cdot\)OH are produced in the bulk of the polluted solution using the electrogenerated Fenton’s reagent (reaction 1) where H\(_2\)O\(_2\) is supplied in situ from the two-electron reduction of dissolved O\(_2\) (reaction (6)) and Fe\(^{3+}\) is continually regenerated from Fe\(^{2+}\) reduction (reaction (7)), which is initially added to the solution at a catalytic amount (i.e., \(10^{-5}\) M) [1,15-18].