Applied Clay Science 166 (2018) 27-37

Contents lists available at ScienceDirect

Applied Clay Science

journal homepage: www.elsevier.com/locate/clay

Research paper

Degradation of aqueous ketoprofen by heterogeneous photocatalysis using Bi_2S_3/TiO_2 -Montmorillonite nanocomposites under simulated solar irradiation

Lila Djouadi^a, Hussein Khalaf^a, Horiya Boukhatem^{a,b}, Hocine Boutoumi^a, Amina Kezzime^c, J. Arturo Santaballa^d, Moisés Canle^{d,*}

^a Laboratoire de Génie Chimique, Département de Génie des procédés, Faculté de Technologie, Université Saad Dahleb-, Blida 1, BP270-09000 Blida, Algeria ^b Département des Sciences de la Matière, Faculté des Sciences et de la Technologie, Université Djilali Bounaama de Khemis-Miliana, Route de Theniet El Had, 44001 Khemis- Miliana, Algeria

^c Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32, 16111 Algiers, Algeria

^d Universidade da Coruña, Grupo Reactividade Química e Fotorreactividade (React!), Departamento de Química, Facultade de Ciencias & CICA, E-15071 A Coruña, Spain

ARTICLE INFO

Keywords: Heterogeneous photocatalysis Ketoprofen Nanocomposites Montmorillonite Bi₂S₃ TiO₂

ABSTRACT

The photocatalytic degradation of Ketoprofen (KP), 2-(3-benzoylphenyl)-propionic acid was studied under near UV-Vis irradiation (NUV-Vis) using supported photocatalysts. Bi2S3/TiO2-montmorillonite (Bi2S3/TiO2-Mt) photocatalysts were synthesized using a two- step ion exchange and impregnation method, and characterized using different techniques: Fourier transform infrared spectra (FTIR), X-ray fluorescence (XRF), X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and photo-electrochemistry. Successful intercalation of ${\rm TiO}_2$ and ${\rm Bi}_2S_3$ in the montmorillonite (Mt) was carried out, and the corresponding energy diagram for the Bi₂S₃/TiO₂ heterojunction has been proposed. The resulting Bi₂S₃/TiO₂-Mt nanocomposites were able to degrade KP under NUV-Vis irradiation. KP photodegradation was monitored by HPLC. The kinetics of photocatalytic transformation followed the Langmuir-Hinshelwood kinetic model. Pseudo-first-order kinetics adequately fitted the experimental data ($t_{1/2}$ ca. 17 min at pH 11, $t_{1/2}$ ca. 44 min at pH 3. 0.5 g·L⁻¹ Bi₂S₃/TiO₂ (25/75)-Mt nanocomposite). Factors affecting the kinetics of the process, such as the different Bi_2S_3/TiO_2 ratio and initial pH solution have been discussed. KP photoproducts were identified using HPLC-MS, and the corresponding reaction mechanism has been proposed. Photodegradation of KP over Bi2S₃/TiO₂-Mt nanocomposites under NUV-Vis irradiation starts with the decarboxylation of KP and subsequent hydroxylation by HO' and oxidation by HO' and other reactive oxygen species (ROS) leads to the formation of photoproducts. TiO₂ and Bi₂S₃ intercalated in the montmorillonite are cheap and efficient nanocomposites for the abatement of persistent organic pollutants (POP), such as KP, using NUV-Vis light.

1. Introduction

In the past decade, there has been a growing interest in the occurrence of pharmaceuticals and personal care products (PPCPs) in aquatic environments. Common wastewater treatment processes are not efficient enough for the elimination of a variety of PPCP because of their low biodegradability (Halling-Sørensen et al., 1998; Huber et al., 2003; Petrović et al., 2005). Consequently, these compounds occur in sewage treatment plant (STP) effluents, and are discharged into surface waters (Halling-Sørensen et al., 1998; Huber et al., 2003; Petrović et al., 2005). Besides classical biological treatments, photochemical processes and advanced oxidation processes (AOP) may be a solution for the elimination and degradation of PPCP (Burrows et al., 2002; Ternes et al., 2002).

Ketoprofen (2-(3-benzoylphenyl) propionic acid, KP -Scheme 1-, is one of the worldwide most-used non-steroidal anti-inflammatory drugs (NSAID), also used as analgesic and antipyretic. Anti-inflammatory and analgesic effects are due to inhibition of prostaglandin synthesis, while its antipyretic effect is attributed to a resetting of the hypothalamic temperature-regulating center. These drugs are widely used as nonprescription drugs (Abdel-Hamid et al., 2001; Dvorak et al., 2004; Marco-Urrea et al., 2010).

Heterogeneous photocatalysis is an alternative remediation technology and has attracted attention of many research groups around the

* Corresponding author. *E-mail address:* moises.canle@udc.es (M. Canle).

https://doi.org/10.1016/j.clay.2018.09.008

Received 14 June 2018; Received in revised form 4 September 2018; Accepted 6 September 2018 0169-1317/ © 2018 Published by Elsevier B.V.

